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The information contained in a protein’s amino acid sequence dictates its three-dimensional structure. To
quantitate the transfer of information that occurs in the protein folding process, the Kolmogorov information
entropy or algorithmic complexity of the protein structure is investigated. The algorithmic complexity of an
object provides a means of quantitating its information content. Recent results have indicated that the algo-
rithmic complexity of microstates of certain statistical mechanical systems can be estimated from the thermo-
dynamic entropy. In the present work, it is shown that the algorithmic complexity of a protein is given by its
configurational entropy. Using this result, a quantitative estimate of the information content of a protein’s
structure is made and is compared to the information content of the sequence. Additionally, the mutual
information between sequence and structure is determined. It is seen that virtually all the information contained
in the protein structure is shared with the sequence.@S1063-651X~96!50707-5#

PACS number~s!: 87.10.1e, 87.15.By, 89.70.1c

For most proteins, the information contained in the pri-
mary sequence is sufficient to dictate the three-dimensional
structure. Although this succinct statement captures the es-
sence of the protein folding problem, there are a number of
manifestations of it and these have increasingly preoccupied
the biochemical community@1#. Areas of investigation range
from thermodynamic and kinetic aspects of folding to the
computational ability to predict structure from sequence. Be-
hind all these approaches lies the underlying assumption that
the information content of the protein sequence is the source
of the great structural specificity of a protein.

Despite this widespread interest, there has been little ef-
fort to quantify the information content either of protein se-
quences or of the folded state. In previous work, a large data
base of protein sequences was analyzed to determine the
Shannon information content@2#. It was shown that the
Shannon entropy,S, was approximately 2.5 bits per amino
acid. In the present work, we turn from the probabilistic
analysis of protein sequences to the information content of
the final folded state. To analyze an object such as the three-
dimensional structure of a protein, the Kolmogorov informa-
tion entropy,K, is employed. It has been shown for certain
classes of problems that the Kolmogorov entropy or algorith-
mic complexity could be associated with the thermodynamic
entropy@3–5#. The present work extends this result to poly-
mer systems and allows the Kolmogorov information en-
tropy of a protein to be estimated.

The Shannon information entropy of a message or se-
quence is related to the probability of receiving that message
from an ensemble of messages. Paradoxically, in the Shan-
non formalism, once a message is received its information
content is zero. Algorithmic complexity was a concept intro-
duced by Kolmogorov and developed by a number of work-
ers to avoid the probabilistic, ensemble interpretation of
Shannon@6–8#. The algorithmic information is defined as the
shortest binary string required to describe the object. Alter-
natively, it can also be defined as the shortest program re-

quired to produce the string with a universal computer. The
algorithmic entropy is a property of the specific object under
consideration rather than of the ensemble. There has been
controversy in the literature regarding the relationship be-
tween information entropy and thermodynamic entropy@9#.
These controversies are potentially resolved by a general
definition of ‘‘physical entropy’’ as the sum of the uncer-
tainty in the system, Shannon entropy, and what is known
about the system, Kolmogorov entropy@4,5#. Zurek has also
shown that for a Boltzmann gas, the algorithmic entropy can
be estimated using the thermodynamic entropy, a result an-
ticipated by Bennett@3#. In general, this is a good estimate
for any statistical mechanical system whose configuration
can be encoded with a binary sequence.

The protein folding problem can be represented as a Tur-
ing or universal computer problem. The data input, the pro-
tein sequence, is readily described using a binary string. This
string can be encoded with 2.5 bits per amino acid as esti-
mated from the Shannon entropy@2#. The output is the Car-
tesian coordinates of every atom in the protein and is also
readily encoded in a binary string. The Kolmogorov entropy
provides a means of describing the information content of
this output string. Although it is difficult to calculate exactly,
it is relatively easy to put upper bounds on the Kolmogorov
entropy. Often these bounds are independent of the specific
algorithm used to calculate them@5#.

To determine the algorithmic complexity of an individual
microstate of a polymer such as a protein, we encode its
configuration. The simplest possible set of instructions for
describing a protein is as follows:~a! list all the F andC
angular coordinates of the planar peptide linkages.~b! Order
the list according to the occurrence of the coordinates along
the sequence. This description captures the main features of
the problem. Certainly rotameric states of side chains will be
important. However, once the backbone configuration is set,
sidechain rotamers are readily optimized computationally.
Consequently, the main information content is found in the
backbone configuration. The specification of the angular co-
ordinates,F andC, provides the secondary structure of the*Fax: 303-871-2254. Electronic address: gdewey@du.edu
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protein. The ordering or connectivity of the variousF-C
pairs will then give the tertiary structure of the final folded
state.

To specify the algorithmic complexity of part~a!, the list
of F-C coordinates, an approach analogous to the one Zurek
used for the Boltzmann gas, is followed@5#. A protein of
N amino acid units is assumed to have peptide orientations
distributed over a configurational space of volume
V5FC. To specify a protein’s secondary structure, a pre-
determined level of accuracy,DV, is required. With this ac-
curacy, the location in configurational space of each peptide
bond rotation can be described by a number whose size is
V/DV. If these are algorithmically random, the length of a
program needed to encode the relevant angles for a single
peptide bond is ln2(V/DV). The length of a program re-
quired to list all the angular coordinates is

K'Nln2~V/DV!1O„ ln2~N!…1O~1!. ~1!

For self-delimiting programs, the value ofN will be known
and theO„ln2(N)… correction can be eliminated@5#. Note
that for the Boltzmann gas, a factor of 1/N appears in the
first term of Eq.~1!. This is a result of the indistinguishabil-
ity of particles and does not appear in the protein problem
because of the sequential ordering and amino acid composi-
tion. The configurational volumeV is the volume available
to a random coil and is often given the symbolzrc @10#. It is
given by

zrc5E
0

2pE
0

2p

e2bE~F,C!dFdC, ~2!

whereE(F,C) is the internal energy associated with bond
rotation andb is 1/kT. The value ofzrc has been estimated
as 4118°2 @10,11#. Proteins are made up of secondary struc-
tural units that are defined in broad regions ofF-C space.
Typically, these units are taken to bea helix, b sheet,b
turn, and random coil. To determine the secondary structure
in this configurational volume, one must knowF andC to
an accuracy of640° @12#. Thus, a value of 1600°2 has been
used forDV. In Dill’s notation, DV5zg and z5zrc /zg . A
correction is also added to the value ofz to make it compat-
ible with a cubic lattice model. Our first contribution to the
Kolmogorov entropy isK5Nln2z.

To estimate the contribution to the algorithmic complex-
ity from the ordering of the list of coordinates@part ~b!#, the
connectivity of the polymer must be considered. It is particu-
larly convenient to consider a lattice model@10,13#. In this
model, the polymer occupiesN connected sites in a three-
dimensional lattice ofN0 sites. To encode the polymer con-
figuration as a binary string, we give an empty~or solvent!
site a 0 and a filled~or polymer site! a 1. The polymer con-
figuration is now represented by a binary string of length
N0 that containsN 1’s. The algorithmic complexity of such a
string can be estimated using a device that involves the lexi-
cographic ordering of all possible strings@14#.

To illustrate this approach, we first consider a system con-
figuration in which the filled sites are randomly distributed in
the lattice without a connectivity requirement. To specify a
given string, we first compute all possible strings, print them
in lexicographic order and find the address for the string of

interest. The number of all possible strings isV and the
addresses will run from 1 toV. Since an address numeral
can be as large asV, a program must be able to represent
this number. BecauseV will be a large number, the algorith-
mic complexity of the problem will be dominated by the
mere representation of this number. The algorithmic com-
plexity in this case will be at most ln2V. For the present
configuration of a random string of lengthN0 with N 1’s,
one has@14#

K< ln2SN0

N D 1O~ ln2N!1O~1!, ~3!

where again theO~ln 2N) will not appear in a self-delimiting
program. Also, note that asN gets large and approaches
N0 , the information content approaches zero.

For the polymer problems, the calculation ofV is more
complicated. Using the Flory-Huggins approach@13,15,16#,
one successively ‘‘builds’’ the configuration in a stepwise
fashion. There areN0 sites available for the first polymer
unit. In successive units, the probability of finding a vacant
site to add thei th unit is given by a factorpi and the number
of configurations becomes

V5N0)
i51

N21

pi . ~4!

To account for excluded volume effects, Flory approximates
pi by

pj5~N02 j !/$N022 j /q%, ~5!

whereq is the coordination number of the lattice. In the limit
of largeN, @13# V5a2N. The constanta depends on the
lattice structure and is given bya5(122/q)2(q/221). For a
cubic lattice,a is equal to 2.25. The contribution of the poly-
mer connectivity to the algorithmic complexity is now given
by K<Nln2V5Nln2(1/a).

Combining the results for encoding of a protein according
to the directions in parts~a! and~b!, the Kolmogorov entropy
of a protein is given by

K<Nln2S zaD , ~6!

where we have assumed a self-delimiting program. This is
essentially the thermodynamic configurational entropy for a
protein and the value of this parameter has been discussed
extensively by Dill@10#. For a cubic lattice model,z is esti-
mated at 3.8 anda52.25, givingK<0.77 bits per amino
acid. A more realistic estimate@10# that accounts for internal
interactions between protein sidechains givesz/a51.4 and
K<0.49. Thus, a program to compute the structure of a pro-
tein that is 100 amino acids long requires less than 49 binary
digits. Also, it is seen that the Kolmogorov complexity is
significantly less than the Shannon information content of
the sequence, 2.5 bits per amino acid.

For protein structure prediction, a computer program is
required that produces the protein’s spatial coordinates given
a specific sequence. Consequently, the algorithmic complex-
ity of the protein itself is not as important as the shared or

R40 54T. GREGORY DEWEY



mutual information between the structure and the sequence.
But it would appear that we have determined two different
quantities, the Shannon information entropy for sequences
and the algorithmic complexity for structures. This problem
is circumvented using Zurek’s concept of physical entropy
@4,5#. The physical entropy,S, is given by

S5K1I , ~7!

and is the sum of the information known about the system
~Kolmogorov information!, K, and the missing information
~Shannon information!, I .

To determine the shared physical entropy or information
between the sequence~seq! and structure~str!, we just cal-
culateS~seq:str! from conditional entropies. The mutual in-
formation is given by@5#

S~seq:str!5S~str!2S~str u seq!, ~8a!

5S~seq!2S~sequ str!. ~8b!

S~struseq! is the conditional entropy of a structure given a
specific sequence. The conditional entropy is determined
from the following relationship:

S~str u seq!5S~str!2S~seq!1S~sequ str!. ~9!

S~str! is estimated by the Kolmogorov entropy, Eq.~6!, and a
value of approximately 0.5 bits per amino acid is assumed.
For the value ofS~seq!, we use the Shannon entropy~2.5 bits
per amino acid!. The conditional probability ofS~sequstr! can
be estimated from exhaustive mutagenesis experiments

where the amino acid sequence is altered and viable proteins
are screened. Thus, for a given protein structure the number
of possible sequences can be explored. A complete mutagen-
esis study of the protein coding domains of the HIV protease
has been done@17#. This study produced all point mutations
that could result in a folded protein. For all combinations of
single mutations, one has 6.831060 possible protein se-
quences that fold to a given structure. From information
theory, the number of possible sequences will be 2NI. The
information calculated from these experimental results is the
conditional information related to the number of possible
protein sequences given a specific protein structure. For this
protein of 99 amino acids, this provides an estimate of 2.0
bits per amino acid forS~sequstr!. This number is most likely
an overestimate, as some combinations of single mutations
may be incompatible.

With these various estimates and considerations, it is seen
thatS~struseq! is approximately zero and the mutual informa-
tion @Eq. ~8!# is then given byS~seq:str!'S~str!. This shows
that all the information in the final structure is shared with
that in the protein sequence. In information theory terminol-
ogy, the protein folding process can be viewed as a noiseless
communication channel, directly communicating the infor-
mation from the sequence. It also suggests that outside envi-
ronmental influences such as solvation or ionic strength do
not add appreciably to the information content of the pro-
cess, i.e., that the sequence itself is the main source of infor-
mation.
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